RU / EN

Информационные материалы

Риск развития заболевания – это вероятность возникновения заболевания на любом этапе жизни пациента. Так как болезнь может проявляться у разных людей на разных этапах жизни, чаще всего риск рассчитывают как среднюю вероятность развития данного заболевания в популяции. В таком случае мы имеем дело с относительным риском развития заболевания.

Относительный риск рассчитывается путем сравнения рисков развития данного заболевания в группе людей, обладающих каким-либо общим признаком (к примеру, это могут быть пациенты с высоким уровнем холестерина - известного фактора риска развития ишемической болезни сердца или носители определенного генотипа какого-либо гена) и в контрольной группе, в которую входят люди случайным образом выбранные из общей популяции.

Допустим, риск развития данного заболевания в изучаемой группе выше чем в общей популяции в 1,5 раза. Это значит, что страдать от ишемической болезни сердца будет, предположительно, на 50% больше людей с высоким холестерином по сравнению с людьми из общей популяции. Такой процент не абсолютно точен, то есть, если наблюдать в течение жизни за людьми из выбранных групп, можно обнаружить что болезнь возникнет, к примеру, у 52% пациентов из группы с высоким холестерином. Такая разница может объясняться разного рода причинами, одна из которых - размер сравниваемых групп. Чем больше людей в группе, тем больше точность определения риска. Важно понимать, что полученный при сравнении групп риск развития заболевания относится к статистическим понятиям, так что индивидуальный риск развития для конкретного пациента и риск, подсчитанный для группы, в целом могут отличаться.

Создание модели расчета совокупного генетического риска включает два шага: 1) преобразование значения отношения шансов (OR – odds ratio) для конкретного полиморфного локуса в значение относительного риска и 2) вычисление значения совокупного относительного риска на основе значений рисков для локусов предрасположенности из первого шага.

Что такое отношение шансов (OR)?

Большая часть современных исследований генетической предрасположенности к многофакторным заболеваниям проводится с использованием подхода "случай-контроль". Задачей исследований является поиск аллелей генов, частоты которых значимо различаются в группах пациентов и здоровых индивидов.

Результаты обычно бывают представлены в виде отношения шансов (OR – odds ratio), значение которого представляет собой отношение шансов события в одной группе к шансам события в другой группе, или отношение шансов того, что событие произойдет, к шансам того, что событие не произойдет, то есть, выражаясь в терминах вероятностей:

OR = (Pr(c|A)/Pr(nc|A)) / (Pr(c|C)/Pr(nc|C))

Абсолютный риск возникновения заболевания, как правило, не может быть прямо измерен в исследованиях «случай-контроль», потому что соотношение пациентов и здоровых индивидов не соответствует их соотношению в популяции. Но, принимая некоторые допущения, мы можем оценить риск исходя из значений отношения шансов.

Известно, что для редких болезней относительный риск может быть аппроксимирован отношением шансов. В общем случае это допущение неверно для большинства распространенных многофакторных заболеваний. Однако, оказывается, что риск для генотипов может быть оценен из выражения отношения шансов, приведенного выше. Эти вычисления особенно упрощаются, если допустить, что здоровые индивиды являются случайной выборкой из той же самой популяции, что и пациенты, включая возможно заболевших людей, а не специально отобранной группой. Для увеличения размера выборки и статистической мощности исследования современные работы по полно-геномному поиску ассоциаций используют выборку здоровых индивидов, которая не соответствует пациентам по возрастным критериям и не гарантирует отсутствие заболевания у членов этой группы. То есть, она максимально корректно описывает случайную выборку из общей популяции. Следует отметить, что данное допущение чрезвычайно редко выполняется точно, но полученная оценка риска обычно довольно умеренна и смягчает отклонения от данного предположения. Исходя из этих предположений мы получаем возможность вычисления генетического риска для носителей предрасполагающего генотипа данного полиморфного маркера по отношению к среднему риску возникновения заболевания в популяции.

Как учитывать влияние нескольких полиморфных маркеров?

Для множества исследований последних лет было обнаружено, что мультипликативная модель риска адекватно описывает полученные данные и лучше подходит для описания результатов, чем альтернативные модели – доминантная и рецессивная. Это означает, что совокупный риск возникновения заболевания представляет собой произведение оценок риска для отдельных маркеров, то есть для маркеров g1 и g2:

RR(g1,g2) = RR(g1)RR(g2)

При этом подразумевается допущение, что факторы риска независимы. Очевидным нарушением этого допущения является случай неравновесия по сцеплению нескольких маркеров. В этом случае для оценки риска используются комбинации аллелей этих маркеров.

Расчет совокупного риска возникновения заболевания.

Совокупный риск возникновения заболевания рассчитывается исходя из значений совокупного генетического риска для данной популяции и общего риска заболевания для популяции, представителем которой является исследуемый индивидуум (этническая принадлежность, пол, географическое происхождение и т.д.)

Таким образом, для оценки риска возникновения заболевания для конкретного пациента по сравнению со средним риском в популяции необходимо знание следующих исходных данных:

  • Частоты аллелей и генотипов исследуемых полиморфных маркеров в популяции, которой принадлежит пациент
  • Значения OR для исследуемых полиморфных маркеров и заболевания
  • Значение популяционного риска возникновения заболевания

Краткий обзор моделей наследования.

Историю развития генетического анализа можно прочитать здесь, а ниже приведен краткий перечень основных моделей наследования и связанных с ними определений и допущений, которые используются для расчета генетического риска возникновения заболевания:

Определения и допущения:

    • r "случаев" и s "контролей" являются случайно отобранными образцами из популяции.
    • Биаллелельный полиморфный маркер (SNP) имеет два аллеля A и B, три генотипа AA, AB и BB, где Pr(B) = pи Pr(A) = 1-p.
    • Получены данные генотипирования для всех n = r + s.
    • Неизвестный локус предрасположенности к болезни имеет аллели M и N.
    • Исследование обнаруживает ассоциацию между заболеванием и полиморфным маркером благодаря неравновесию по сцеплению между исследуемым полиморфным маркером и локусом предрасположенности к заболеванию:
      Локус предрасп.
      Маркер
      M
      N
      Всего
      A
      (1-p)(1-q) + D
      (1-p)q - D
      1-p
      B
      p(1-q) - D
      pq + D
      p
      Всего
      1-q
      q
      1
    • Пусть G0 = AA, G1 = AB и G2 = BB.
    • Данные исследования могут быть представленны в виде таблицы сопряженности 2x3:
G0
G1
G2
Всего
случаи
r0
r1
r2
r
контроли
s0
s1
s2
s
Всего
n0
n1
n2
n
  • pi = Pr(Gi|случаи)
  • qi = Pr(Gi|контроли)
  • Нулевая гипотеза H0: pi = qi для i = 0,1,2
  • Распространенность: k = Pr(случаи)
  • Пенетрантность: fi = Pr(случаи|Gi) для i = 0,1,2
  • Относительные риски для генотипов (GRR): λ1 = f1/f0 и λ2 = f2/f0
  • Аллель B является предрасполагающим аллелем, если: λ2 ≥ λ1 ≥ 1 и λ2 > 1

Базовые генетические модели (m – аллель риска):

  • Доминантная – предполагает, что влияние на пенетрантность проявляется для гетерозигот и гомозигот по предрасполагающему аллелю;
    λ1 = λ2;
    Pr(случаи|AB) = Pr(случаи|BB);
    Статистика: mm+Mm против MM (хи-квадрат).
  • Рецессивная – предполагает, что влияние на пенетрантность проявляется только для гомозигот;
    λ1 = 1 and λ2 > 1;
    Pr(случаи|AA) = Pr(случаи|AB);
    Статистика: MM+Mm против mm (хи-квадрат).
  • Мультипликативная – предполагает, что пенетрантность зависит от количества копий предрасполагающего аллеля;
    λ1 = λ21/2;
    Pr(случаи|AA) Pr(случаи|BB) = {Pr(случаи|AB)}2;
    Статистика: M против m (хи-квадрат).
  • Аддитивная – предполагает, что значение пенетрантности гетерозигот лежит между значениями пенетрантности для обеих гомозигот;
    λ1 = (1+λ2)/2;
    Pr(случаи|AA) + Pr(случаи|BB) = 2Pr(случаи|AB);
    Статистика: MM против Mm против mm (тест Кохрана-Армитаджа для линейных трендов).
  • Кодоминантная – предполагает, что значение пенетрантности гетерозигот лежит между значениями пенетрантности для обеих гомозигот, но зависимость от значений рисков гомозигот неизвестна;
    Статистика: логистическая регрессия.

По материалам проекта deCODEme

Источник: Ген Эксперт


Вернуться назад